

California Energy Commission

"Making Renewables Part Of An Affordable And Diverse Electricity System In California"

Stratagies in Solar-Electric Building

By Joseph McCabe

jmccabe@energy.state.ca.us

916-654-4412

September 21, 2001

Public Interest Energy Research (PIER) Renewables Photovoltaics

- RD&D Optimizing Cost / Value of systems
- Powerlight, Commonwealth, Endecon, REDI and SMUD
- **◆** BIPV Justification, DG, PV:Bonus, new Solicitation?

Cost / Value of PV

Value:

- •~1,800 kWh / year per kW installed PV
- Peak shaving
- Reliability
- •Quality, and more....

Additional BIPV Value:

- •Shading value
- Building Material Credit
- •Net Metered Retail Value
- •Aesthetic value and more...

19 SMUD Projects

PROJECT LIST FOR ASSESSING AND TARGETING RENEWABLE ELECTRICITY DEVELOPMENT

Project 1.1	Technology Assessment for Advanced Biomass Power Generation – UCD
Project 1.2	Photovoltaic Markets and Technologies – Solar Electric power Assoc.
Project 1.3	Utility System Capacity and Customer Demand Value of PV – NREL
Project 1.4	Performance Indexing of PV Systems – TBD
Project 1.5	Assessment of Worst-Case Weather Conditions – TBD

PROJECT LIST FOR INCREASING AFFORDABILITY BY IMPROVING EXISTING FACILITIES

Project 2.1 Accelerated Anaerobic Composing for Energy Generation – Yolo County Landfill

PROJECT LIST FOR EXPANDING AFFORDABILITY AND DIVERSITY USING RENEWABLE DISTRIBUTED TECHNOLOGIES

Project 3.1	Laminate & Batten Roofing System – Uni-Solar
Project 3.2	BIPV Mounting Approaches for New Construction – Schott Applied Science
Project 3.3	Mainstreaming PV for Residential Roofs – Power Light
Project 3.4	Flat Roof Mounting Approaches – Schott Applied Power
Project 3.5	Optimization of Residential PV Systems – Astro Power
Project 3.6	Remote Dispatch & PV Irrigation – TBD
Project 3.7	PV & Evaporative Cooling – Jenrus Corp.
Project 3.8	Solar Dish Concentrating with Stirling Engine - SAIC

PROJECT LIST FOR DEVELOPING RENEWABLE TECHNOLOGIES FOR TOMORROW'S ELECTRICITY SYSTEM

Project 4.1	Non-Vacuum Thin-Film CIGS Modules - Unisun
Project 4.2	Maximum Power Point Tracker Inverter Development - SMA
Project 4.3	Hybrid PV/Lighting System – Oak Ridge Nat. Lab
Project 4.4	Slat Array Concentrator – Sergei Vasylyev
Project 4.5	Distributed Generation Geartrain for Megawatt Turbines – Dehl

The Beauty of the SMUD Award for PV

- Resource assessment, BIPV <u>systems</u> development, CSP, module manufacturing, quantification of performance and value, and connecting to the market are the path to making PV more affordable in California.
- ◆ The technology developers, SMUD and the CEC all have a vested interest for success of these PV RD&D projects.

For Non-Building Integrated

PV installations:

- Land needs to be purchased
- Permits needs to be pulled
- Land needs clearing
- Mounting structures need to be erected

- Holes needs to be dug
- Concrete needs to be poured

- Electrical lines need to be strung in conduit
- Connections to the existing utility are needed
- Transformers and switching gear are needed
- A fence is needed

Notice the Photovoltaics isn't even mentioned yet!

BIPV makes economic sense

- With a building you have already:
- Purchased the land
- Paid for permits
- Have electrical equipment
- Don't need a fence around equipment.
- Most importantly, with net metering, you get the retail value of the electricity produced!

DG Potential of PV on Buildings

Successful PV:Bonus Projects

Figure 3. AC PV modules

Figure 4. Architectural PV glazing system

Figure 5. PV-integrated modular homes

Figure 6. Rooftop PV systems

Figure 7. Sunslates manufactured by Atlantis Energy

Figure 4: Prototype Phototherm product adjacent to thermalonly collector on test.

Figure 8. PowerGuard roof tiles manufactured by PowerLight

BIPV Solicitation

- Developing PIER
 Renewables and
 Buildings RD&D
 Solicitation on BIPV
 whole building
 efficiency and energy
 production through PV's
 that shade and insulate.
- Industry input / DOE Workshop

http://www.energy.ca.gov/research/PIER/index.html